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The vibrational relaxation of an I2 molecule in a xenon fluid has been simulated by three methods. The
conventional perturbation theory approach based on an equilibrium molecular dynamics (MD) simulation is
compared with purely classical nonequilibrium MD and mixed quantum-classical surface-hopping MD
simulations. Relaxation times and state-to-state vibrational transition rate constants obtained with these three
approaches are compared and information that can be extracted concerning the mechanism of vibrational
relaxation is examined. Both harmonic and anharmonic solutes are considered as are some common
approximations invoked in obtaining vibrational relaxation times.

1. Introduction

Vibrational energy relaxation (VER), in which a vibrationally
excited molecule loses energy to the surrounding solvent, is a
critical component of numerous processes in condensed phases.1,2

Not only does VER play an important role in reaction dynamics
and photochemistry, but also it has the potential to be used as
a sensitive probe of the environment of the vibrationally excited
mode.3,4 Thus, an accurate theoretical description of VER is
vital to modeling chemical dynamics in complex systems. In
this paper, we compare three approaches for calculating
vibrational relaxation lifetimes: the standard Fermi’s Golden
rule approach, purely nonequilibrium molecular dynamics
simulations, and mixed quantum-classical surface-hopping
simulations.

The most common theoretical treatment of VER5-23 is based
on perturbation theory1,2,24 and makes use of equilibrium
molecular dynamics (EMD) simulations. Within this formalism,
the state-to-state transition rates are determined by evaluating
the Fourier transform of the time correlation function (TCF) of
the force exerted by the solvent on the solute vibrational mode
at the vibrational frequency of the solute. Given the large number
of solvent particles in a condensed-phase system, obtaining the
exact quantum mechanical TCF is not feasible except for special
cases. Thus, the quantum TCF is usually replaced by its classical
analogue,1 which can be calculated directly during the dynamics
simulation. This approach has been widely successful;1,3,8,15-17,25

however, this classical treatment can fail when the spacing
between the solute vibrational states is much larger than
kBT.10

One approach to circumventing this problem is to find the
relationship between the classical and quantum TCFs, the so-
called quantum-correction factor (QCF). In particular, Bader
and Berne found an exact analytic form of QCFs for the model
system of a harmonic solute bilinearly coupled to a harmonic
bath.5 Furthermore, they pointed out that the VER time for such
a system described classically is the same as that obtained from
a quantum mechanical treatment. Unfortunately, an exact QCF
is generally not known for other systems. Comparing several
schemes for obtaining the approximate QCFs for exactly

solvable models, Egorov et al.9 found that no method was
satisfactory for all of the models they considered and, more
importantly, the performance was inconsistent and the approach
is thus not always predictive. Some considerations of how to
choose approximate QCFs have been given by Skinner and Park
recently.13 Using a more reliable quantum correction factor,
Skinner and co-workers have obtained good agreement with
experimental vibrational relaxation lifetimes for O2 (n ) 1) in
liquid O2.11 Most recently, on the basis of the harmonic bath
assumption, Kim and Rossky26 developed a promising approach
to obtain a quantum correlation function directly from the
simulated classical correlation function. However, because most
of these approximate QCFs can only be derived with an effective
harmonic bath assumption,14,26 an anharmonic solvent may
represent a significant test.

Recently, a method for calculating the TCF on the basis of
Feynman’s quantum statistical formulation of path centroid,
known as the centroid molecular dynamics method, has been
introduced.27 This method has been applied to a variety of
dynamics problems;28-30 however, its main limitation is that it
can only be applied to a certain class of liquid-state correlation
functions.29

Besides the problem in calculating the force-force TCF,
another difficulty associated with the perturbation theory
approach is that for high-frequency vibrations an accurate
Fourier transform of the TCF is difficult to obtain because of
the numerical noise inherent in any computer simulation.
However, one can circumvent the numerical Fourier transform
by using short time expansions of the force-force TCF. The
expansion coefficients are used to determine the parameters of
an analytic ansatz for this TCF, which can be evaluated at all
times during the MD simulation and through which the Fourier
transform of the TCF can be obtained analytically. Egorov and
Skinner expanded the TCF in powers of time up tot4 and
calculated the vibrational relaxation rates of I2 (n ) 1) in xenon.8

The results are expected to be significantly better than those
obtained by Gaussian expansion (up tot2) method (see section
4.1).

Nonequilibrium molecular dynamics (NEMD) provides a
direct, nonperturbative, purely classical approach for calculating
VER rates in solution. The NEMD method has been applied to
a variety of condensed-phase systems.16,17,31-33 Some results
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for which NEMD VER rates are comparable to those obtained
by the EMD method have been discussed by Bader and Berne.5

In addition to the EMD-based perturbation theory approach
and the purely classical NEMD simulations mentioned above,
an alternative approach for exploring dynamics in solution is
based on Tully’s surface-hopping method.34,35 Unlike the
quantum-classical incarnation of the standard EMD-based
treatment,1,5 the surface-hopping approach is not based on
perturbation theory. Therefore, the weak coupling approximation
is not invoked, quantum mechanical effects associated with the
solute are included, and numerical problems, for example,
associated with the Fourier transform, are circumvented. In
addition, the surface-hopping approach accounts for self-
consistent interaction of the quantum and classical subsystems.
Thus it provides an additional context in which to investigate
the potential shortcomings of mixed quantum-classical meth-
ods.5 Moreover, the MQC surface-hopping simulations represent
an alternative approach for exploring the mechanisms of VER
more directly than perturbation theory, for example, how the
energy is deposited in the surrounding bath.

The VER of I2 in xenon has been widely studied by
experiments36,37 and theory.8,20,22,38-42 In particular, the vibra-
tional relaxation of I2 in xenon has been well-characterized
experimentally by Harris and co-workers for a range of solvent
temperatures and densities. Brown et al.38 carried out NEMD
simulations to model these experiments.36,37 Their results for
the decay of I2 vibrational energy are in very good agreement
with the experimental results if the time axis of molecular
dynamics decay is scaled by a factor of∼12. The significantly
more rapid energy transfer in the simulations was attributed to
a too-repulsive I2-Xe potential. With the use of the same
intermolecular potentials, similar VER times were obtained with
the instantaneous-pair theory developed by Larsen and Stratt.42

The idea of this theory is that the main contribution to vibrational
friction correlation comes from a few mutual nearest-neighbor
pairs between individual solute and solvent sites. Their results
suggest that the vibrational relaxation of I2 in xenon is a few-
body dynamics process. Egorov and Skinner have calculated
vibrational relaxation times,T1, over a wide range of densities
and temperatures.8 They obtained good agreement between their
results, based on a breathing sphere model, andT1 values
extracted from experimental data36 by fitting one parameter in
the interaction potential.43 In their study, the force-force TCF
was fit using short-time information up to ordert4. More
recently, Miller and Adelman calculated the temperature and
solvent density dependence of the vibrational energy relaxation
rate constant,k(T,F).20 Their VER times are obtained based on
a Gaussian approximation for the force-force TCF, which is
exact to ordert2. No comparison with experiments is given.
The Gaussian approximation, while perhaps yielding significant
absolute errors inT1 (see section 4.1), will probably often
reliably predict experimental trends.

In this paper, the standard MQC surface-hopping method,
NEMD simulations, and EMD simulations based on perturbation
theory are carried out for I2 in a xenon fluid. Vibrational
relaxation times obtained by these three kinds of molecular
dynamics simulations and mechanistic information obtained by
the MQC and EMD simulations are compared and discussed.
The organization of this paper is as follows. In section 2, we
describe how VER is simulated in each of these three methods.
The details of the computational procedures are given in section
3, and the calculated results are presented and discussed in
section 4. Finally, a brief summary is offered in section 5.

2. Theory

2.1. Equilibrium Molecular Dynamics (EMD). The most
prevalent approach for calculating vibrational relaxation rate
constants is based on perturbation theory and requires only an
equilibrium molecular dynamics simulation. As discussed in the
Introduction, straightforward application of Fermi’s Golden rule
can be problematic for real systems because of the difficulty in
knowing the proper quantum correlation function. One success-
ful case for which the state-to-state vibrational transition rate
constant has been derived is that of a harmonic oscillator solute
with a harmonic solvent bath and solute-solvent coupling that
is linear in the solute coordinate.5 Under these assumptions, the
state-to-state transition rate from staten to staten - 1 can be
written as5

where ê′qm(ω) is the frequency-dependent quantum dynamic
friction andµ is the reduced mass of the solute molecule. The
friction, ê′qm(ω), can be determined analytically from its classical
analogue and a QCF,

with the classical dynamic friction given by

The classical force autocorrelation function,〈δF(t)δF(0)〉cl,
whereδF(t) ) F(t) - 〈F〉 and F is the force exerted by the
solvent on the solute bond, is calculated during a purely classical
molecular dynamics simulation carried out with a fixed solute
bond distance.

Using a kinetic scheme and detailed balance, Bader and Berne
showed that the vibrational energy relaxation obeys an expo-
nential decay law and that the relaxation rate constant,T1

-1, in
a mixed quantum-classical treatment (a quantum solute in a
classical solvent) can be written as

For a quantum solute in a quantum solvent,

which is the same as the purely classical result. (It is interesting
to note that using eqs 1 and 2, one can easily obtain the VER
time T1 (eq 5) in terms of the state-to-state transition rate
constants as

which is in agreement with that derived by Landau and Teller.44)
Obviously, the assumptions of a harmonic solute, a harmonic
solvent bath, and weak bilinear coupling mean these equations
are approximate for realistic systems. However, for this infinitely
dilute rare gas solution system (I2 in xenon), we use this QCF
without test; we expect that the anharmonicity of the solvent is
not too large.

2.2. Nonequilibrium Molecular Dynamics.Nonequilibrium
molecular dynamics can be used to determine classical vibra-
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tional energy relaxation times directly by investigating the time
decay of excess vibrational energy. If the energy decay is
exponential, the relaxation timeT1 is given by

where〈Ev(t)〉 is the nonequilibrium average of the vibrational
energy at timet, 〈Ev(∞)〉 is the equilibrium average vibrational
energy, and the nonequilibrium average initial energy is
〈Ev(0)〉. In the present work, the vibrational energy for a diatomic
solute is taken to be

where r is the diatom internuclear distance with conjugate
momentumpr andV(r) is the potential energy function for an
isolated diatom.

2.3. MQC Surface-Hopping Approach.A nonequilibrium
mixed quantum-classical surface-hopping approach can also
be used to calculate relaxation times.45-48 Here we consider one
solute molecule dissolved in a solvent ofN atoms. The details
of our implementation of vibrationally adiabatic molecular
dynamics have been given elsewhere.34,49Briefly, the classical
Hamiltonian for the full system is

wherer andeare the bond distance and orientation coordinates
of the solute molecule,Q ) (Q1, Q2, ...,QN) are the coordinates
of theN solvent atoms,pr, pe, andP ) (P1, P2, ..., PN) are the
corresponding momenta,µ is the solute reduced mass, andmj

is the mass of solvent atomj. The potential energy,V(r,e,Q), is
the sum of the vibrational potential of the solute and the pairwise
Lennard-Jones potentials describing the solute-solvent and
solvent-solvent interactions. Within the mixed quantum-
classical formalism, the vibrational degree-of-freedom of the
solute is treated quantum mechanically while the remaining
degrees-of-freedom are treated classically. If a Born-Oppen-
heimer separation between the “fast” vibration and the other,
“slow,” coordinates is valid, the dynamics of the system is then
governed by the following coupled equations: first, the vibra-
tional Schro¨dinger equation,

from which the stationary adiabatic vibrational states,
φn(r;e,pe,Q), of the solute for fixed classical coordinatese, pe,
andQ are obtained, where the quantum mechanical Hamiltonian
is written as

and, second, the classical equations of motion governed by the
vibrationally adiabatic Hamiltonian for staten,

The time-dependent wave function,Ψ(r,e,pe,Q,t), can be
expanded in terms of an orthonormal adiabatic basis,
φk(r;e,pe,Q),

Then, the complex-valued expansion coefficientsCk satisfy

where Ek is the energy of the adiabatic vibrational statek
obtained by solving eq 10,|Ck|2 is the corresponding occupation
probability, anddkj(e,pe,Q) is the nonadiabatic coupling vector
defined as

Tully’s “fewest switches” algorithm34,35 is used to incorporate
transitions between the different adiabatic vibrational surfaces
induced by the nonadiabatic coupling. A random numberê
(0 < ê < 1) is generated and compared with the transition
probability gkj between the adiabatic statesk and j at each
classical time step. The transition probability is given by

where

For a two-level system, for instance, ifk ) 1, a switch to state
2 will occur if ê < g12 and if k ) 2, a switch to state 1 will
occur if ê < g21. To maintain energy conservation, if a switch
does occur, the classical velocities are scaled. If a hop is
attempted to a state of high energy and the required velocity
reduction is greater than the component of the velocity to be
adjusted, the velocity component is reversed without switching
states.34

The standard MQC method just described retains full coher-
ence in the evolution of quantum amplitudes, which is supposed
to overestimate the quantum subsystem-bath nonadiabatic
coupling, as discussed by Rossky and co-workers.50,51In a series
of papers, they pointed out that the coherence loss (quantum
decoherence effect) attributed to the subtle differences in the
dynamics between the bath and different quantum states of the
subsystem can be important in determining the rate of electronic
transitions. Several explicit methods of incorporating decoher-
ence effects in mixed quantum-classical systems were sug-
gested to improve the calculated rate constants.

Unlike electronically nonadiabatic systems, which often have
only small regions with strong nonadiabatic coupling (the
solvated electron being an exception) where transitions can
occur, here a vibrational transition can occur at any time during
the whole dynamics process because while the nonadiabatic

〈Ev(t)〉 - 〈Ev(∞)〉
〈Ev(0)〉 - 〈Ev(∞)〉

) e-t/T1 (7)
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coupling continually fluctuates, no extended weak nonadiabatic
coupling region can be identified. For example, there is an
average of 80 transitions during the two-level model 500 ps
MQC simulation of the present system. Therefore, at short times,
the quantum states associated with different possible classical
trajectories retain coherence; however, as the various possible
classical trajectories diverge, coherence is dissipated.

Here we use the surface-hopping approach with no special
accounting for decoherence effects beyond averaging over the
random seed that determines the hops. While the effect on
vibrational relaxation times is not clear, it is the logical starting
point; we are currently investigating methods for incorporating
decoherence in MQC simulations of vibrational relaxation.

3. Simulation Details

The system considered in this work is a single I2 solute
dissolved in a solvent of 107 xenon atoms in a cubic box of
length 19.87 Å with the minimum image convention and
periodic boundary conditions,52 corresponding to a solvent
density of 3.0 g/cm3. Constant energy (NVE) molecular dynam-
ics simulations are carried out with an average temperature of
∼303 K during the EMD and MQC simulations. For the NEMD
simulations, the situation is more complicated. To examine the
VER of the I2 vibrational mode, energy is added to the I2

vibrational mode at the beginning of the data collection stage.
Because this procedure is after an equilibration stage, the average
temperature of the system in this data collection stage can be
difficult to control. To compare VER times with the other two
methods, we use constant temperature (NVT) molecular dynam-
ics for the two low initial excitation energy (∆E0 ) 214 and
321 cm-1) simulations. For the two high initial excitation energy
(∆E0 ) 6000 and 9000 cm-1) NEMD simulations, constant
energy molecular dynamics were used. We have found that for
the high initial energies, the temperature fluctuations do not
strongly affect the energy decay.

The solute-solvent and solvent-solvent interactions are
described by a sum of pairwise Lennard-Jones potentials. To
study the effect of the solute potential on vibrational energy
relaxation, both Morse and harmonic oscillator potentials are
used to describe the solute molecule vibration during the NEMD
and MQC simulations. The potential parameters are given in
Table 1.

3.1. EMD Simulations. Constant energy (NVE) molecular
dynamics simulations are carried out using a leapfrog Verlet
integrator52 with the I2 bond length constrained to its equilibrium
value. (The equations of motion for the rigid I2 diatomic are
integrated directly.52) The average temperature during the
simulations is 304.3 K. The force exerted by the solvent atoms
along the I2 bond is monitored at each MD time step and the
force-force TCF is then calculated. The force used in eq 3 is
given by

whereFIa andFIb are the forces exerted by the solvent on the
two solute iodine atoms andn̂ is the unit vector between them.
The power spectrum of the TCF evaluated at the I2 gas-phase
vibrational frequency (pω0 ) 214 cm-1) is obtained by the
standard fast Fourier transform technique. To obtain converged
results, an ensemble average of 35 trajectories is calculated with
step size of 2 fs and a propagation time of 625 ps.

3.2. NEMD Simulations.Constant temperature (NVT) mo-
lecular dynamics simulations by the constraint method52 are
carried out for both the anharmonic and harmonic solute models
with two low initial excitation vibrational energy values,∆E0

) 214 and 321 cm-1, which correspond to the vibrational energy
of the I2 molecule in then ) 1 excited state without and with
the vibrational zero-point energy, respectively. A trajectory is
first propagated using a leapfrog Verlet integrator52 (δt ) 3 fs)
for a 60 ps equilibration period; the solute vibrational energy
is then increased by∆E0 from an average equilibrium vibrational
energykBT. All excess energy is added as kinetic energy by
setting the bond distance to be the gas-phase equilibrium value;
the center-of-mass and orientation are not changed. Next, a 900
ps nonequilibrium trajectory is run for data collection. An
additional 10 ps equilibration period is performed before another
nonequilibrium trajectory is run. This procedure is repeated for
a total of 700 nonequilibrium trajectories. Finally, the average
energy is fit to eq 7 to check the energy decay law and to get
the relaxation timeT1. Instead of constant temperature dynamics
simulations, constant energy dynamics simulations are used for
two high initial vibrational energy values,∆E0 ) 6000 and 9000
cm-1, while the other simulation parameters and procedures are
the same as those for the low excitation energy simulations.
For both anharmonic and harmonic solute systems, the average
temperatures are 326 and 342 K for∆E0 ) 6000 and 9000 cm-1,
respectively, during the simulations.

3.3. MQC Simulations. The MQC simulations have been
carried out including two and three vibrationally adiabatic states
(two-level model and three-level model) to investigate the
vibrational energy relaxation. The simulation is initiated with
an equilibration period consisting of classical (with a fixed I2

bond distance) and adiabatic mixed quantum-classical dynamics
in then ) 1 state of 50 ps (δt ) 2.5 fs) and 20 ps (δt ) 2 fs),
respectively.49 A swarm of trajectories is then propagated, all
starting from the final equilibrated configuration, for 500 ps
under constant energy (NVE) surface-hopping dynamics during
which the data is collected for analysis. At each classical
dynamics step, the vibrational Schro¨dinger equation (eq 10) is
solved by an iterative Lanczos algorithm.53,54This approach can
be tuned for the number of states of interest. For example, for
this system, only the three and four lowest vibrational states
are calculated for the two-level and three-level model, respec-
tively, to meet the convergence criterion. A potential optimized
discrete variable representation (PO-DVR) basis55,56is also used
to decrease the computational expense; 30 PO-DVR basis
functions are used here. The populations of the vibrational states
are obtained by averaging over 450 MQC trajectories with a
step size of 2 fs. These 450 trajectories consist of 15 swarms
of trajectories, each with a different equilibration run; each
swarm of trajectories contains 30 trajectories from the same
equilibration run but with different random number sequences,
which determine the vibrational transitions by Tully’s “fewest
switches” surface-hopping algorithm as described in section 2.3.

4. Results and Discussion

4.1. EMD Simulations.The normalized force autocorrelation
function obtained from EMD simulations is shown in Figure 1.

TABLE 1: Potential Parameters of I2 in Xenon

I-Xe Xe-Xe I-I

Lennard-Jones σ (Å) 3.94 4.10
ε (K) 323.7 221.6

Morse De (eV) 1.547
R (Å-1) 1.864
r0 (Å) 2.667

harmonic k (eV) 2.993
r0 (Å) 2.667

F ) 1
2
(FIa - FIb)‚n̂ (18)
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The correlation function decays rapidly at short times (∼250
fs) but displays a small long-time tail beyond 2 ps. The
vibrational relaxation timeT1 and state-to-state transition rate
constantk0r1 are calculated from this autocorrelation function
according to eqs 4 and 5 and eq 1, respectively. We have
adopted Berne’s harmonic model5 here in the absence of
formulations for a general anharmonic system; it is anticipated
that the anharmonicity of the xenon solvent will be small. The
quantum correction factor in these equations provides a method
for connecting purely classical, mixed quantum-classical, and
purely quantum mechanical relaxation times and rate constants
obtained from perturbation theory for the harmonic system
described in section 2.1; the results are listed in Table 2. For
the I2 molecule atT ≈ 300 K, we havepω ≈ kBT and the QCF,
for example, in eq 2, is approximately 1 (here (âpω/2)
coth(âpω/2) = 1.08). Thus the classical, quantum, and mixed
quantum-classical EMD relaxation times are all similar. A
comparison of rate constants and VER times obtained from the
three methods considered in this paper is postponed to section
4.4.

To examine the short-time approximations and compare with
the results of Miller and Adelman,20 we fit the normalized
force-force TCF with a Gaussian (shown as a dashed line in
Figure 1),

This fit yields τ ) 112 fs, which is nearly the same as the
comparable result of Miller and Adelman (τ ) 112.68 fs). The
analytic VER timeT1 is then given by

which yieldsT1 ) 7.3 ns; this is much larger than theT1 ) 149
ps obtained from the numerical Fourier transform. However, it
is in good agreement with the result of Miller and Adelman (T1

) 7.64 ns).
We have also fit the TCF to an analytic form based on an

expansion up to ordert4 according to an approach used by
Egorov and Skinner8 (dashed-dotted line in Figure 1),

Using this approach, we foundT1 to be 43.4 ps based on eq 31
of ref 7. Naturally, the fit to ordert4 is better than that to order
t2 especially for the very short times. The force autocorrelation
function and two fits are shown for the first 150 fs in the inset
panel of Figure 1. Note that the ordert4 fit is indistinguishable
from the numerical result on this time scale, while the Gaussian
approximation is in good agreement but with clear differences.
However, at longer times, both the Gaussian approximation and
the fit to ordert4 are inadequate for describing the decay of the
calculated autocorrelation function because they fall too rapidly
to zero.

4.2. NEMD Simulations.The vibrational energy relaxation
of I2 from the NEMD simulations is shown as a function of
time in Figure 2. Results are presented for both harmonic and
anharmonic I2 potentials and two initial excitation energies (∆E0

) 214 and 321 cm-1). The vibrational energy is fit to the
exponential decay law in eq 7 to extract the vibrational
relaxation timeT1; these times are given in Table 2. It is not
clear to us how one would unambiguously extract state-to-state
transition rate constants from these simulations, and we have
not attempted to do so. It can be seen from Figure 2 that the
vibrational energy relaxation does obey an exponential decay
law, in accord with eq 7, for both harmonic and anharmonic
solute potentials with these low initial excitation energies.

Figure 1. Normalized force autocorrelation function as a function of
time. The solid, dashed, and dotted-dashed lines represent numerical
results, a Gaussian fit, and a fit of ordert4 given in eq 21, respectively.
The numerical results and fits are shown for short times (up to 150 fs)
in the inset with squares (Gaussian fit) and circles (ordert4 fit).

TABLE 2: Overall and State-to-State Vibrational
Relaxation Times

T1 (ps) k0r1
-1 (ps)

anharmonic
solute

harmonic
solute

anharmonic
solute

harmonic
solute

NEMD ∆E0 ) 214 cm-1 185 112
∆E0 ) 321 cm-1 169 116
∆E0 ) 6000 cm-1 110
∆E0 ) 9000 cm-1 98

EMD cl-cl 149
q-cl 162 102
q-q 149 94

MQC two-level 114 88 155 120
three-level 132 113

Figure 2. The vibrational energy relaxation of I2 in xenon from the
NEMD simulations using both harmonic and anharmonic solute
potentials versus time for initial vibrational excitation energies of (a)
∆E0 ) pω )214 cm-1 and (b)∆E0 ) 3pω/2 ) 321 cm-1. The smooth
lines are exponential fits based on eq 7.

T1 ) 2µ
â〈F(0)2〉( 1

2πτ2)1/2
exp(ω0

2τ2/2) (20)

〈F(0)F(t)〉
〈F(0)2〉

)
cos(bt)

cosh(at)
(21)

〈F(0)F(t)〉
〈F(0)2〉

) exp(- t2

2τ2) (19)
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Results are presented for a high initial excitation energy (∆E0

) 9000 cm-1) in Figure 3 for the harmonic and anharmonic I2

potentials, along with exponential fits; the corresponding
relaxation times for the harmonic potential are given in Table
2. In this case it is obvious that, for the anharmonic solute, the
energy decaydoes notobey an exponential decay law when
the initial excitation is large (∆E0 ) 6000 cm-1, not shown,
and 9000 cm-1). This is illustrated both by the inadequate
exponential fit and the nonlinearity of ln[〈E(t) - E(∞)〉] versus
time shown in the inset. Taken together, the results presented
in Figures 2 and 3 indicate that, not surprisingly, at low initial
energies the anharmonicity of the solute is less prominent but
with high initial energy this is not the case and the solute
anharmonicity leads to energy decay that cannot be adequately
described by only one parameter such asT1. This has been noted
previously by others.8,57 In addition, the nonexponential (or
multiexponential) energy decay is consistent with the experi-
mental results of Paige and Harris36,37and the previous NEMD
simulations of Brown et al.38 In fact, our NEMD results appear
to be in very good agreement with the latter simulations.

The energy relaxation timesT1 obtained from the NEMD
simulations (see Table 2) with low initial vibrational excitation,
∆E0 ) 214 and 321 cm-1, are∼112 and 116 ps for the harmonic
solute, respectively, while for the anharmonic solute, they are
∼185 and 169 ps, respectively. Thus, the VER times for the
anharmonic solute are longer than those for the harmonic one.
A more thorough comparison of the harmonic and anharmonic
solutes is given in section 4.5. For the two high initial vibrational
excitation energies,∆E0 ) 6000 and 9000 cm-1, of the harmonic
solute the VER timesT1 are∼110 and 98 ps, respectively; as
noted above, a single relaxation time cannot be obtained for
the anharmonic solute at these energies. Note that the relaxation
times are essentially independent of the initial excitation energy
for the harmonic solute systems with both low and high initial
energies, taking into account that the temperatures are higher
in the high initial energy simulations than the low excitation
energy simulations (as discussed in section 3.2). A weak
dependence of the relaxation times on the initial excitation

energy is found in anharmonic solute simulations with low initial
vibrational energy. It is not clear what is the proper choice of
vibrational excitation energy to simulate, for example,n ) 1
relaxation,∆E0 ) 214 or 321 cm-1, and the dependence ofT1

on the initial energy further complicates this issue.
4.3. MQC Simulations.One of the parameters in the MQC

approach described in section 2.3 is the number of vibrationally
adiabatic states included in the simulation. For the vibrational
relaxation of I2 (n ) 1), the simplest possible choice is two
states (two-level model). The VER timeT1 is expected to be
inaccurate in this model, but information regarding transitions
between then ) 1 andn ) 0 levels can still be obtained from
this two-level model. Therefore, we will concentrate on the two-
level model in the following. We have carried out preliminary
calculations involving three states and comment on these in
section 4.4.

Using the MQC surface-hopping approach described in
section 2.3, we calculate the populations of then ) 1 andn
) 0 vibrational states as a function of time. The results from
these simulations are plotted in Figure 4. For this two-state
system, the vibrational energy relaxation obeys an exponential
decay law for both harmonic and anharmonic solutes, and
thus, the vibrational relaxation time,T1, can be found by fit-
ting the vibrational state populations or, alternatively, the
energy relaxation directly. Obtaining the state-to-state transi-
tion rate constants,k1r0 andk0r1, requires additional consid-
eration.

The two-level model assumes that the transitions only occur
between the lowest two solute vibrational states. From the
kinetic scheme

and an initial population in the excited state,F1(0) ) 1, the
population as function of time is given by58

Figure 3. Vibrational energy relaxation of I2 in xenon as a function
of time for (a) a harmonic and (b) an anharmonic solute potential from
the NEMD simulations. The initial vibrational excitation energy of the
solute is 9000 cm-1. The circles show the exponential fits. The natural
logarithm of the excess vibrational energy is shown as a function of
time for the two simulations in the insets with the equilibrium
vibrational energy,Ev(∞), taken to be 210 cm-1.

Figure 4. The results of two-level model MQC simulations of I2 in
xenon shown in two ways: (a) the population of the adiabatic
vibrational states (n ) 0,1) as a function of time; (b) vibrational energy
relaxation as a function of time. Results are shown for the anharmonic
solute potential. The smooth lines are fits based on eqs 23 and 24.

n ) 1 {\}
k0r1

k1r0
n ) 0 (22)

〈F1(t)〉 )
k1r0 + k0r1 exp[-(k1r0 + k0r1)t]

k1r0 + k0r1

〈F0(t)〉 ) 1 - 〈F1(t)〉 (23)
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The average vibrational energy as a function of timet is given
by

which can be obtained directly from the MQC surface-hopping
simulation. To fit〈E(t)〉 and extract the transition rate constants,
we use eqs 23 and 24 assuming in the latter that, for example,
〈ε1(t)F1(t)〉 ) 〈ε1(t)〉〈F1(t)〉 and〈ε1(t)〉 ) 〈ε1〉eq ≡ ε1. This gives
the nonequilibrium vibrational energy in terms of the state-to-
state rate constants as

According to detailed balance,k1r0 ) k0r1 e-â(ε1-ε0), so the
average energy can be written as

where the first term on the right-hand side is the equilibrium
average vibrational energy of the solute. Clearly the energy
relaxation obeys an exponential decay law with the relaxation
time T1 given by

This is obviously in contrast to eq 6, obtained for a harmonic
solute bilinearly coupled to a harmonic bath.5 Note that eq 27
is derived by assuming that only then ) 0 andn ) 1 states are
populated. The difference with the EMD simulation is thus a
consequence of the use of only two vibrational states in the
MQC simulation. It is expected that this difference will be
significant, because for I2 the equilibrium population of then
) 2 vibrational state is∼9%; it is ∼3% and∼1% for n ) 3
and n ) 4 vibrational states, respectively. Comparing results
from the two-level and three-level model simulations in Table
2, it is clear that the VER time is lengthened significantly by
including then ) 2 state. The VER time increases from 88 to
113 ps and from 114 to 132 ps for the harmonic and anharmonic
potentials, respectively. Thus, the MQC simulation with a three-
level model yields a VER time in very good agreement with
the NEMD results for a harmonic solute and in reasonable
agreement for an anharmonic solute.

In addition, from Table 2, for both MQC models, the VER
times are significantly longer for the anharmonic solute com-
pared to the harmonic one, which is also observed in the NEMD
simulations (see section 4.5).

4.4. Comparison of Different Methods.A comparison of
the EMD, NEMD, and MQC results is complicated by a number
of issues. First, the overall VER time,T1, obtained from two-
level model MQC simulations cannot be straightforwardly
compared to those obtained via the EMD simulations as
discussed in section 4.3. The three-level model simulations are
presumed to be more directly comparable. Second, the NEMD
approach only givesT1 and no state-to-state information, and
under some circumstances, a single time constant such asT1 is
not adequate to represent the energy decay (see Figure 3) for
the anharmonic solute. On the other hand, essentially single-

exponential decay is observed for the harmonic solute for all
initial energies. Third, some of the EMD results rely on the use
of QCFs, which are derived on the basis of a harmonic model
system5 and thus are only approximate for the I2 in Xe system.
However, an advantage of this system is that the QCFs are
approximately 1 and the classical, mixed quantum-classical,
and fully quantum mechanical results are all similar (within
10%).

Given the difficulties just described, the agreement between
the relaxation times,T1, obtained from the low initial energy
NEMD and three-level model MQC simulation results is
excellent for the harmonic solute potential and reasonable
(within ∼20-30%) for the anharmonic solute. The relaxation
times obtained from the EMD simulations are longer (by∼30%)
than the NEMD and MQC times for the harmonic solute.
However, the issue can be clarified somewhat by comparing
the state-to-state transition rate constants from two-level-model
MQC and EMD simulations. The rate constant for the harmonic
solute from EMD results,k0r1

-1 ) 94 and 102 ps, is in
reasonable agreement with that (120 ps) from the MQC two-
level model. Assuming the EMD simulation provides a reliable
state-to-state rate constantk0r1, the VER timeT1 ≈ 69 and 75
ps is obtained from eq 27 in a two-level system. These values
are similar to theT1 ≈ 88 ps from MQC simulations for the
two-level model. Note however that given the disagreement
between the EMD and three-level model MQCT1 values, it
must be that, for the three-level MQC simulations, either (1)
the state-to-state rate constantk0r1 will not agree with the EMD
result or (2) the relation betweenk0r1 and T1 given in eq 6
does not hold.

Though the relaxation times obtained from the three simula-
tion approaches are in good agreement, the relaxation is several
times faster than that observed in the experiments of Paige and
Harris.36 While the experimental energy decay is nonexponential
and a single time constant is not sufficient to describe the data,
the measured relaxation is clearly much faster than that seen in
the simulations. Brown et al. observed this in their NEMD
simulations and attributed it to potential functions that are too
repulsive38 (see also refs 10 and 42). We are currently
investigating the effect of using improved potential functions
to calculate the vibrational relaxation times.

4.5. Comparison of Harmonic and Anharmonic Solutes.
The NEMD and MQC simulations provide convenient com-
parisons of the harmonic and anharmonic solute systems. In
the NEMD simulations, the relaxation becomes multiexponential
for the anharmonic solute at higher energies but remains single
exponential for the harmonic solute. For high initial vibrational
excitation, the relaxation is faster in the anharmonic potential
than the harmonic potential, as expected. However, the relax-
ation time,T1, is longer for the anharmonic solute than the
harmonic solute for both NEMD simulations with low initial
energies. The same trends are found in the MQC simulations.
This is an interesting result though it has been observed
previously.59,60 Of particular note is recent work by Karrlein
and Grabert57 who developed a semiclassical theory of vibra-
tional energy relaxation based on a master equation. The micro-
scopic model that they used is an oscillator coupled to a bath
of harmonic oscillators. They found that the VER times are
longer for a Morse oscillator than a harmonic oscillator. This
is the same trend as we have observed in both the NEMD and
MQC simulations. It is important to note that this result applies
only to the low initial excitation energies; faster relaxation is
still observed (see Figure 3) and expected for high initial
energies because of anharmonicity in the vibrational potential.

〈E(t)〉 ) 〈 ∑
i)0,1

εi(t)Fi(t)〉 ) 〈[ε1(t) - ε0(t)]F1(t)〉 - 〈ε0(t)〉

(24)

〈E(t)〉 )
ε0k0r1 + ε1k1r0

k0r1 + k1r0
+

(ε1 - ε0)k0r1

k0r1 + k1r0
e-(k0r1+k1r0)t

(25)

〈E(t)〉 )
ε0 + ε1 e-â(ε1-ε0)

1 + e-â(ε1-ε0)
+

ε1 - ε0

1 + e-â(ε1-ε0)
e-k0r1[1+exp(-â(ε1-ε0))]t (26)

T1 ) (k1r0 + k0r1)
-1 ) [k0r1(1 + e-â(ε1-ε0))]-1 (27)
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4.6. Mechanistic Information. Both the EMD and MQC
simulations are convenient for extracting mechanistic informa-
tion about the vibrational relaxation. It is interesting to compare
the information obtained from the two approaches, and we do
so in Figures 5 and 6.

The positions of the solvent xenon atoms that make the
biggest contributions to the force,F, along the I2 bond in a 50
ps EMD simulation are shown in Figure 5a. This clearly shows
that most of these solvent atoms are distributed near the two
ends of the I2 molecule. A smaller number are found perpen-
dicular to the I2 bond with a very short distance from the I2

center-of-mass. This suggests that the largest solute-solvent
interactions, which induce the vibrational energy relaxation, are
from the solvent atoms arranged at the ends or very near the
center of the I2 bond. However, this is only an inference because
it looks only at the solvent atoms exerting the largest forces

while the relaxation time is obtained from the Fourier transform
(evaluated at the solute vibrational frequency) of the force
autocorrelation function.

Similar results can be obtained from MQC simulations. In
Figure 5b, the position distribution is shown of the xenon atoms
with the largest nonadiabatic coupling contribution. Results are
shown for a 50 ps MQC simulation. This distribution is
qualitatively the same as that based on the forces in the EMD
simulations but is broader compared to that in Figure 5a.
Supposing that only large nonadiabatic coupling is responsible
for the vibrational transition, we show in Figure 5c the
distribution of the xenon atoms in Figure 5b with the largest
30% nonadiabatic couplings. Obviously this distribution is
narrower than that shown in Figure 5b and is centered at slightly
smaller center of mass distances.

To estimate how many xenon atoms are involved in the
vibrational energy relaxation, the average nonadiabatic coupling
component,〈R4 (i)‚d01(i)〉, of each xenon atomi during the MQC
simulation and an average force,〈F(i)〉, of each xenon atomi
exerted along the bond of I2 during the EMD simulation are
shown in Figure 6. The coupling or force is averaged for the
atom with the largest contribution at each time step (the identity
of which is not the same at every step), the second largest
contribution, and so on. For clarity, results are only shown for
the 20 largest contributions. From Figure 6, we can conclude
that only a few xenon atoms can participate in the process of
energy transfer during the vibrational relaxation. The distribution
is slightly broader for the force in the EMD simulation than
the coupling in the MQC simulation. Again, the result can be
interpreted somewhat more straightforwardly for the MQC
simulation because the relaxation time in the EMD simulation
is related to the Fourier transform of the force autocorrelation
function. The results in Figure 6 support the instantaneous-pair
theory analysis of Larsen and Stratt.42

5. Concluding Remarks

The vibrational relaxation of I2 in a xenon solvent has been
investigated by three approaches: (1) the standard perturbation
theory approach based on equilibrium molecular dynamics
(EMD) simulations, (2) classical nonequilibrium molecular
dynamics (NEMD) simulations, and (3) mixed quantum-
classical (MQC) surface-hopping simulations. Both harmonic
and anharmonic I2 vibrational potentials have been used in these
calculations. The vibrational relaxation time,T1, and the state-
to-state rate constants, for example,k0r1, have been calculated
using each of these methods when possible. In addition,
information concerning the mechanisms of vibrational relaxation
available from the EMD and MQC simulations has been
examined.

The NEMD simulations give relaxation times that are
independent of the initial vibrational excitation energy for the
harmonic I2 potential but weakly dependent for the anharmonic
potential. If the initial excitation energy is high (6000 or 9000
cm-1), the energy decay is nonexponential for the anharmonic
potential and a single time constant such asT1 is not sufficient
to describe the relaxation. In contrast, for the harmonic potential,
the energy decay is exponential for all initial energies that we
have studied and the relaxation time is essentially constant.
Interestingly, for low initial excitation energies (214 and 321
cm-1), the relaxation is slower by∼50% for the anharmonic I2

potential than the harmonic potential, which is in good agree-
ment with Karrlein and Grabert’s calculated VER rates at low
excitation energy57 and previous gas-phase calculations.

To obtain the perturbation theory results from the EMD
simulations, we use the quantum correction factor for a harmonic

Figure 5. The position distributions of xenon atoms contributing to
vibrational relaxation of the I2 solute (using the anharmonic solute
potential). The distributions are given as a function ofR, the distance
between the xenon atom and I2 center-of-mass, andθ, the angle between
the xenon atom-I2 center-of-mass vector and the I2 bond. Each
distribution consists of one data point for each time step, representing
(a) the xenon atom exerting the largest force along the I2 bond during
a 50 ps EMD simulation, (b) the xenon atom with the largest
nonadiabatic coupling contribution during a 50 ps MQC simulation,
and (c) the points from panel b with the top 30% nonadiabatic coupling
values.

Figure 6. The contribution of individual xenon solvent atoms to the
vibrational relaxation: (0) the average of the largest contribution to
the nonadiabatic coupling component,〈R4 (i)‚d01(i)〉, obtained from a
50 ps MQC simulation; (O) the average of the force〈F(i)〉 exerted
along the I2 bond by the xenon atom with the largest contribution at
each time step in a 50 ps EMD simulation. Only the 20 largest
contributions are shown; the averages are normalized to the largest
value.
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solute bilinearly coupled to a harmonic bath.5 For this system,
the quantum correction factor is∼1.08, and therefore, the
classical, quantum, and mixed quantum-classical perturbation
theory approaches give similar results. The relaxation lifetimes
for the harmonic potential are significantly longer (by∼20-
30%) than those from the NEMD simulations. If it is assumed
that the harmonic potential results can be used also for the
anharmonic case, quite good agreement with the NEMD
calculations is found.

We have investigated two short-time approximations to the
force autocorrelation function obtained in the EMD simulations
that are frequently used in calculating relaxation times. The
Gaussian approximation gives significant error, resulting in a
relaxation time that is too long by a factor of∼50. Significant
improvement is obtained with a fit of ordert4,8 giving a result
within a factor of 3 of the numerically calculatedT1.

The MQC simulations have been carried out using two-level
and three-level models. The two-level model gives unreliable
T1 values, but the state-to-state rate constant,k0r1, obtained for
the harmonic potential is in reasonable agreement with that from
the EMD simulations. The three-level model gives relaxation
times that are in excellent agreement with the NEMD calcula-
tions for the harmonic I2 potential and in reasonable agreement
for the anharmonic potential. The MQC results give longer
relaxation times for the anharmonic potential than the harmonic
potential, in agreement with the NEMD results.

An analysis of mechanistic information from both the EMD
and MQC simulations indicates that (1) only one or two xenon
atoms are primarily involved in the vibrational relaxation and
(2) the most effective position for a xenon atom for promoting
energy transfer is near the ends of the I2 molecule or very near
the center-of-mass. The two approaches give qualitatively and
semiquantitatively similar results in both regards.

The present results provide an interesting comparison of
different methods for simulating vibrational relaxation in a
realistic system in which quantum effects are expected to be
small. Overall, the three methods studied here are in relatively
good agreement with differences only on the order of∼10-
50% inT1 andk0r1. This is expected for a low-frequency solute
such as I2, though there are few direct comparisons of different
approaches (especially the surface-hopping method). The re-
laxation is much too fast (by a factor of∼10) relative to
experiments,36 which is likely due to the potential used.38

Clearly, different implementations of the mixed quantum-
classical treatment, that is, in the context of perturbation theory
or in a nonequilibrium surface-hopping approach, do not give
the same relaxation time; how these approaches behave in cases
in which quantum mechanical effects are important, for example,
relaxation of a higher frequency solute, is currently under
investigation.
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